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The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight

velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which

linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in

ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme

are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well

early in reionization (& 40% ionized), but not late (* 80% ionized).
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Introduction.—Neutral hydrogen atoms in the interga-
lactic medium (IGM) at high redshift contribute a diffuse
background of redshifted 21 cm-line radiation which enc-
odes a wealth of information about physical conditions
in the early Universe at z > 6, during and before the
epoch of reionization (EOR). To derive cosmological in-
formation from this, however, we must be able to separate
the dependence of the signal on the background cosmology
(i.e., total matter density fluctuations) from that on the
complex astrophysical processes that cause the thermal
and ionization state of the intergalactic gas to fluctuate.
The anisotropy introduced by the peculiar velocity of the
gas, induced by structure formation, is the key to this
separation.

According to linear perturbation theory, the three-
dimensional power spectrum of the 21 cm brightness tem-
perature fluctuations (hereafter, ‘‘21 cm power spectrum’’)
can be expressed as a sum of terms which depend on
different powers of the cosine, �k, of the angle between
the line-of-sight (LOS) n and the wave vector of a given
Fourier modek [1]. Different terms represent contributions
from different sources of fluctuations, including fluctua-
tions in the total matter density, velocity, and hydrogen
ionized fraction, and thereby, in principle, provide a means
of separating the effects of cosmology and astrophysics.
In particular, future measurements, it is proposed [1], can
be used to fit this theoretical dependence of the power
spectrum on �k to extract the total matter density power
spectrum-the cosmological jewel.

The success of this approach, however, depends upon
the validity of the linear �k decomposition. While fluctua-
tions in the total matter density at high redshift are of linear

amplitude on large scales, the nonlinearity of small-scale
structure in density, velocity, and reionization patchiness
can leave its imprint on the 21 cm signal, which might
result in nonlinear distortion in the 3D 21 cm power spec-
trum and so spoil the linear �k decomposition. In what
follows, we will examine this question. We will assess the
accuracy of this method for deriving cosmological informa-
tion from the 21 cm background by using the results of a
new large-scale N-bodyþ radiative transfer simulation of
cosmic reionization as mock data. Our simulation volume
ð425 Mpc=hÞ3 [comparable to the low-frequency array
(LOFAR) [2] survey volume] is large enough to make the
sampling errors smaller than the systematic errors.
The 21 cm power spectrum anisotropy in redshift

space.—The observed frequency reflects both the cosmo-
logical redshift zcos from the time of emission and the
Doppler shift associated with the peculiar radial velocity
vk there. In the ‘‘distorted’’ comoving coordinate system

known as redshift space, the position of the emitter is the
apparent comoving position if the redshift is interpreted as
cosmological only, which shifts the real comoving coor-

dinate r along the LOS to s ¼ rþ 1þzcos
HðzcosÞvkn [where HðzÞ

is the Hubble parameter]. Henceforth, superscripts ‘‘r’’ and
‘‘s’’ denote quantities in real- and redshift space, respec-
tively, and we will write z for zcos.
The 21 cm signal in redshift space can be modeled

as follows, based on different assumptions on peculiar
velocity and reionization patchiness.
(i) Linear scheme (linear velocity-density relation, line-

arized neutral fraction fluctuations): The linear scheme
was originally proposed in the context of linear perturbation
theory [1] and later rederived with weaker assumptions [3]
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which are (1) the velocity (vr) and total density fluctuations

(�r
�) satisfy the linear relation, fvr

kðkÞ ¼ iðHðzÞ
1þzÞf�r

�ðkÞ�k=k,

(2) the baryon distribution traces the cold dark matter
(CDM), (3) the peculiar velocity, the hydrogen density
fluctuation (�r

�H
), and the neutral fraction fluctuation (�r

xHI)

are all linearized. Under these assumptions, the 3D 21 cm
power spectrum can be expanded in polynomials of
�k � k � n=jkj,
Ps;lin
�T ðk; zÞ ¼ P�0ðk; zÞ þ P�2ðk; zÞ�2

k þ P�4ðk; zÞ�4
k:

(1)

While the 0th and 2nd moments are ‘‘contaminated’’ by
power spectra due to reionization and/or spin temperature,

the 4th moment depends only on Pr;total
��;��

(total density

power spectrum) and �xHI;mðzÞ (mass-weighted global neutral

fraction),

P�4ðk; zÞ ¼ c�T
2
bðzÞPr;total

��;��
ðk; zÞ; (2)

where c�Tb is the mean 21 cm signal, c�TbðzÞ ¼
ð23:88 mKÞð�bh

2

0:02 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:15
�Mh

2
1þz
10

q

�xHI;mðzÞ. Here, we focus on the

limit where the spin temperature Tr
s � TCMB, valid soon

after reionization begins. As such, we can neglect the de-
pendence on spin temperature, but our discussion can be
readily generalized to the case of finite Tr

s . In principle, then,
cosmological information can be extracted from the 21 cm
signal by fitting the measured Ps

�Tðk; zÞ to Eq. (1) to isolate
the 4th moment.

(ii) Quasilinear �k-decomposition scheme (linear
velocity-density relation, linearized neutral overden-
sity): The assumption of �r

xHI � 1 breaks down when

�xHI;m < 0:5 [4]. Fortunately, Eqs. (1) and (2) can still

hold, if we adopt the same assumptions (1) and (2) as in
the linear scheme, but assume peculiar velocity and the
neutral density fluctuation �r

�HI
¼ �r

�H
þ �r

xHI þ �r
�H
�r
xHI ,

as opposed to �r
xHI alone, are linearized. In this so-called

quasilinear �k-decomposition formalism [3], only lower
moments differ from the linear scheme prediction.

(iii) Fully nonlinear scheme (nonlinear velocity,
nonlinear neutral overdensity): In the optically-thin ap-
proximation, two nonlinear effects of peculiar velocity
must be taken into account: (1) the 21 cm brightness
temperature is corrected for velocity gradient [1],

�Ts
bðsÞ ¼ �Tr

bðrÞ ¼ c�TbðzÞ 1þ�r
�HI

ðrÞ
j1þ�r

@rv
ðrÞj , where �r

@rv
ðrÞ �

1þz
HðzÞ

dvk
drk

ðrÞ is the gradient of proper radial peculiar velocity
along the LOS, normalized by H

1þz ; (2) when the real-space

comoving coordinates r are mapped to redshift-space
coordinates, volume elements are also resized according
to �VsðsÞ ¼ �VrðrÞj1þ �r

@rv
ðrÞj. Fortunately, the com-

bined effect allows us to compute the 21 cm brightness
temperature in redshift space with a simple formula

[3], �Ts
bðsÞ¼ c�TbðzÞ½1þ�s

�HI
ðsÞ�, where �s

�HI
ðsÞ¼nsHIðsÞ=

�nHIðzÞ�1 is the neutral overdensity in redshift space.
Angular separation of 3D power spectrum.—The

moments of 3D power spectrum can be decomposed
using the �2 fit as follows. For a given LOS, 3D modes
Ps
�TðkÞ with the same �k and same k but different azimu-

thal angle are averaged to give a measure of Ps
�Tðk; �kÞ

and the associated sampling variance �2
Pðk;�kÞ ¼

ð2=N�k;kÞPs
�T

2ðk;�kÞ, where N�k;k is the number of

modes with the same �k and k. For the 3D grid from the
simulated data, we further combine the measures along
three different LOS, tripling the number of modes. Next,
modes are grouped in spherical k shells with the width
�k=k ¼ 0:186 (chosen as a trade-off between minimal
mean �2 and minimal numerical noise, but our results
below are insensitive to this value). For each shell (the k
dependence is implicit below), we shall fit the data

set f�i; P
s
�Tð�iÞ; �Pð�iÞg (where i runs through all modes

within the shell) with the ansatz Ps
�Tð�Þ ¼ P3

j¼1 ajXjð�Þ,
where basis functions Xjð�Þ ¼ f1; �2; �4g and coefficients
aj ¼ fP�0 ; P�2 ; P�4g, for j ¼ 1, 2, 3, respectively. We

employ the standard general linear least squares method
(see, e.g., Ref. [5]) for the �2 fit. This results in best-fit
coefficients aj ¼

P

3
k¼1 Cjk�k with associated error esti-

mates �ðajÞ ¼
ffiffiffiffiffiffiffi

Cjj

p

. Here, we define the 3� 3 matrix

�jk ¼
P

iXjð�iÞXkð�iÞ=�2
Pð�iÞ, whose inverse is the

covariance matrix C ¼ ��1, and a 3-vector �j ¼
P

i P
s
�Tð�iÞXjð�iÞ=�2

Pð�iÞ.
Mock data from a reionization simulation.—We perform

a new large-scale, high-resolution N-body simulation of
the �CDM universe (performed with the CubeP3M code
[6,7]) in a comoving volume of 425 Mpc=h on each
side using 54883 (165 billion) particles. To find halos,
we use the spherical overdensity method and require
them to consist of at least 20 N-body particles; this
implies a minimum halo mass of 109M�. We use subgrid
modeling to compute the halo population with mass
between 108–109M�. Assuming that the gas traces the
CDM particles exactly, we grid the density and velocity
in the IGM (i.e., halo mass excluded) on a 5043 grid
using SPH-like smoothing with an adaptive kernel. Halo
lists and density fields are then processed with the
radiative transfer code C2Ray [8]. Each halo releases
f� ionizing photons per baryon per �t ¼ 11:5 Myrs,

with f� ¼ 8:2 (f� ¼ 2) for halos below 109M� (above

109M�), respectively. To incorporate feedback from
reionization, halos less massive than 109M� located in
ionized regions do not produce any photons. We refer
the readers to Ref. [9] and Iliev et al. [10] for more
details of this simulation. The background cosmology is
consistent with the WMAP Collaboration seven-year
results [11]: �� ¼ 0:73, �M ¼ 0:27, �b ¼ 0:044, h ¼
0:7, �8 ¼ 0:8, ns ¼ 0:96.
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We then calculate the nonlinear 3D 21 cm power spec-
trum, using the mesh-to-mesh real-to-redshift-space-
mapping (MM-RRM) scheme in Ref. [3] for mapping the
nonlinear density, velocity, and ionization grid data from
the simulation in real space onto a redshift space grid, and
separate out the best-fit 4th moment using the aforemen-
tioned angular separation prescription. The linear and qua-
silinear schemes both predict that this 4th moment should
be given by Eq. (2), which we test by evaluating the rhs of
Eq. (2) directly from the simulation N-body results, for
comparison. Some preliminary results were previously
summarized by us in Ref. [12].

Results and discussions.—In Fig. 1, we plot the best-fit
4th moment of the fully nonlinear power spectrum and the
benchmark linear expectation. Note that, while the mock
21 cm signal is from the IGM, as is the observed signal, the
total density power spectrum is expected in the linear
scheme. (There is a difference between the total and
IGM density power spectra, as in Fig. 1, resulting from
the exclusion of particle mass in halos when computing
the IGM density.) We focus on the range of wave numbers,
0:2< k < 1h Mpc�1, for which k is large enough to avoid
a large sampling variance but small enough to avoid a
large aliasing effect.

(i)Consistency checkof the decomposition pipeline: We
confirm that: (1) the total density power spectrum from

N-body simulation agrees with the linear power spectrum
(from CAMB [13]) at large scales k & 0:5h Mpc�1. At
smaller scales, it agrees with the result from the third-order
perturbation theory (3PT) [14], but is enhanced relative to
the linear power spectrum. (2) The best-fit 4th moment
agrees with the total density power spectrum at z ¼ 30
when the IGM is everywhere neutral and the density
fluctuations are of linear amplitude.
(ii) Effect of IGM nonlinear density and velocity fluctu-

ations: For diagnostic purposes, we first investigate
the case in which the ionized fraction at each point in
the IGM is set equal to the mass-weighted global ioniza-
tion fraction �xi;m in the reionization simulation at that

redshift. In this case, the best-fit 4th moment at different
redshifts is enhanced with respect to the total density
power spectrum, and the deviation increases from
20% (z ’ 14) to 70% (z ’ 7), as structure formation
proceeds. These results show that nonlinear density
and velocity fluctuations cause the �k decomposition to
make a systematic error, not caused by ionization
patchiness.
(iii) Effect of inhomogeneous reionization and velocity

fluctuations: Early in reionization, the best-fit 4th
moment for inhomogeneous reionization is suppressed
relative to that for the homogeneously partially-ionized
case. This is because fluctuations in neutral fraction and

FIG. 1 (color online). Top left panel: thematter density power spectrum,�2
�� ¼ k3P��ðkÞ=2	2 (unitless), fromN-body results for total

matter (solid or black) and for IGM matter (green or dot), linear total density (dashed or blue), and 3PT total density (dot-dashed or

magenta), at z ¼ 6:757. Other panels: the total matter density power spectrum [multiplied by c�T
2
bðzÞ] as ‘‘measured’’ by fitting the mock

data (i.e., reionization simulation) for the 3D21 cmpower spectrum to the�k decomposition,�2
�4 ¼ k3P�4 ðkÞ=2	2 (inmK2), at different

phases of reionization ( �xi;m ¼ 0, 0.01, 0.10, 0.50, 0.68, 0.78, and 0.92, respectively). Red data points are reionization simulation results.

Black data points assume homogeneously ionized IGMwith same �xi;m as reionization simulation. Solid black curves are the expectation

from linear scheme, Plinear
�4 , i.e., Eq. (2) evaluated using total density power spectra from N-body simulation [multiplied by c�T

2
bðzÞ].

Plotted in inset are fractional systematic errors, i.e., ðPbest�fit
�4 � Plinear

�4 Þ=Plinear
�4 . We also plot the sampling errors (due to the simulation

volume) for the best-fit 4th moment, �ðP�4 Þ, as error bars, and the fractional sampling errors, �ðP�4 Þ=Plinear
�4 , as shaded regions in inset.
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density anticorrelate in a universe reionized ‘‘inside out’’;
i.e., overdense regions are ionized earlier on average
than underdense regions. This anticorrelation affects the
anisotropy of the 21 cm power spectrum through the
coupling of nonlinear ionization fluctuations with veloc-
ity fluctuations (which are, themselves, correlated with
density fluctuations). Otherwise, reionization patchiness,
alone, cannot introduce anisotropy in the 21 cm power
spectrum (e.g., as in the quasilinear �k decomposition
scheme). A more quantitative explanation will be formu-
lated in detail in Mao et al. [15].

This effect cancels the enhancement due to nonlinear
fluctuations in IGM density and velocity, alone.
Incidentally, the fractional systematic error first crosses
zero (less than 10% at all scales) when �xi;m 	 10%
(z ’ 9:6 in our simulation). Afterwards, this error grows
to 60% for �xi;m & 50%. As determined by the competition

between these two effects, this error depends on both the
reionization epoch and the scale of interest — the smaller
the ionized fraction �xi;m and the smaller the wave number

k, the smaller the error (see Fig. 2).
As the typical size of ionized regions grows larger

than the scales plotted here, the best-fit 4th moment
at k ¼ 0:5–1h Mpc�1 becomes less suppressed after the
50% ionized epoch. For this k-range, the net error changes
sign again when �xi;m ’ 68% (with error <20%).

At late epochs ( �xi;m * 0:8, z & 7), the fractional system-

atic error for all scales is large, * 100%. This is due to
the breakdown of the perturbative expansion, i.e., the
expansion of the 3D 21 cm power spectrum in neutral
density fluctuations becomes divergent when ��HI

*

Oð1Þ, as the ionized bubbles expand and percolate in the

Universe. In addition, while our calculation does not
include the light cone effect [16], this effect becomes
non-negligible at this late time and can further squeeze
the anisotropic power spectrum along the LOS, as does
the redshift space distortion. Therefore, the estimate of
100% error here is only a lower limit to the actual error
at late times.
(iv) The sampling variance: Our simulation volume is

large enough that these systematic errors quoted above are
all greater than the estimated sampling errors (except when
the systematic error crosses zero), so they represent statis-
tically significant deviations from the expectations of the
�k decomposition, rather than accidents of the particular
numerical realization.
In the homogeneously ionized case (denoted by the

superscript ‘‘H’’ below), the fractional sampling error for
the 4th moment, �ðP�4Þ=Plinear

�4 , remains constant over

time, which is a consequence of the unchanging number
of modes. However, the fractional sampling error evolves
dramatically during inhomogeneous reionization (denoted
by the superscript ‘‘I’’), for reasons as follows. For each
ring with given values of �k and k, sampling errors of

power spectra satisfy �I
P=�

H
P ¼ Ps;I

�T=P
s;H
�T � 
ðk;�kÞ,

since N�k;k is the same for both cases. If, for simplicity,


 is only a function of k, then it is straightforward to show

that
�IðP

�4 Þ=Plinear

�4

�HðP
�4 Þ=Plinear

�4

¼ 
. Over time 
 evolves from less than

to greater than unity, because (1) in the early phase of
reionization, the density power spectrum is dominant, but
the �r

�H
-�r

xHI anticorrelation decreases the total power, and

(2) in the late phase, the ionization power dominates over
the density power spectrum.
Conclusion.—This Letter is the first attempt to quantify,

in detail, the intrinsic precision of the linear scheme for
extracting the cosmological matter density power spectrum
from 21 cm observations of the EOR. [A recent paper [17]
considered the Legendre decomposition of the anisotropic
21 cm power spectrum, using seminumerical simulations,
but only showed the results for monopole and quadrupole,
not hexadecapole (4th-moment equivalent), due to large
error bars in their simulations.] Two effects may spoil the
extraction, a major one due to the coupling between
inhomogeneous reionization and velocity fluctuations
and a minor one due to nonlinear density and velocity
fluctuations alone. The competition between these identifies
two phases of reionization particularly interesting to
cosmology— �xi;m ’ 68%, where fractional systematic error

is within 20% for k ¼ 0:5–1h Mpc�1, and �xi;m ’ 10%,

where this error is within 10% for all wave numbers. The
epoch of exact crossover is likely to depend on the reioniza-
tion scenario.
We summarize our results in Fig. 2. We see that, for the

early phase of reionization �xi;m < 40%, the linear �k

decomposition works well for large-scale measurement
k & 0:24h Mpc�1, with errors within 20%. At smaller

FIG. 2 (color online). The fractional systematic error of the
separation scheme, in the inhomogeneous reionization case, as
a function of �xi;m, for k ¼ 0:24, 0.35, 0.52, 0.77, 0:94h Mpc�1,

respectively. The solid (open) dots correspond to the case
where the systematic error is greater (less) than the sam-
pling error of our simulation. The inset is a zoom-in to
0 
 �xi;m 
 0:10.
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scales, down to k ’ 0:5h Mpc�1, errors are within 50%.
During the intermediate phase ( �xi;m ’ 0:4–0:7), using

the �k decomposition at the intermediate k range
0:35–0:5h Mpc�1 can also result in errors within 50%.
However, in the late phase ( �xi;m * 0:8), it is difficult to

extract the cosmological information from 21 cm observa-
tions using the �k decomposition, unless possibly at very
large scales k < 0:2h Mpc�1.
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